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A Monte Carlo algorithm for alpha particle tracking and energy deposition on a RZ cylindrical computa-
tional mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion �ICF� simulations is
presented. The straight line approximation is used to follow propagation of “Monte Carlo particles” which
represent collections of alpha particles generated from thermonuclear deuterium-tritium �DT� reactions. Energy
deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses
various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as
non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation
after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a
polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport
method predicts about 30 picosecond earlier ignition than predicted by the diffusion method, and generates
higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.
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I. INTRODUCTION

Inertial confinement fusion �ICF� is an approach to con-
trolled nuclear fusion that uses high power lasers or charged
particle beams as drivers to create a high energy density
plasma that reaches fusion conditions �1–3�. In the direct
drive approach, the laser or particle beams are focused onto a
spherical fuel pellet that contains a mixture of deuterium-
tritium �DT� fuel. The outer portion of the pellet is ablated
and accelerated outward in a spherically divergent flow, con-
sequently driving the inner part of the pellet inward in a
spherically convergent flow. This inwardly imploding DT
fuel ideally reaches very high densities �on the order of
200 g/cm3�. However, the imploding plasma is also hydro-
dynamically unstable, so that any non-spherical perturbation
introduced by non-uniformity in the driver intensity or the
pellet fabrication will grow in time. Thus the highly com-
pressed fuel will deviate to some degree from perfect sphe-
ricity. This final distorted fuel region must remain suffi-
ciently spherical to avoid mixing of the DT fuel with
surrounding pellet material such as Be or plastic, otherwise it
will fail to compress and ignite. The carefully timed increas-
ing driver intensity drives a final strong shock wave toward
the origin of the spherically imploded fuel and this shock
wave heats a small center portion ��10% � of the fuel �cen-
tral hot spot� to a temperature exceeding 4 keV. The combi-
nation of very high DT fuel density and the high central
temperature results in nuclear fusion reactions between the
deuterium and tritium nuclei, releasing a 14.1 MeV neutron
and a 3.5 MeV alpha particle for each fusion event. The
fusion hot spot plasma radius is comparable to the range of
the 3.5 MeV alpha particles �0.3 g/cm2� such that they slow
down and lose an appreciable amount of energy in the hot
plasma �4,5�, thus “bootstrap heating” the plasma to yet
higher temperature. A fusion burn wave is created that propa-
gates outward into the surrounding dense, but cooler, fuel
and heats this fuel to fusion conditions so it begins burning

as well with temperature rising to 50–80 keV. This process
of hot spot ignition and fusion burn occurs on a time scale of
about 10–50 picoseconds �ps�. In this short time, the fuel is
held stationary by its own inertia, despite the enormous pres-
sures being created. Thus the name inertial confinement fu-
sion is given to this dynamic process.

A critical stage in this complex process is the central hot
spot ignition phase. Significant fusion energy gain ��100�
requires that a hot spot is formed and the fusion burn propa-
gates into the surrounding cold fuel. High gain is necessary
for potential fusion power plant applications. This important
hot spot ignition process will be first tested on the National
Ignition Facility currently under construction at the
Lawrence Livermore National Laboratory �6�. There are un-
fortunately many pathways that lead to ignition failure. If the
hot spot fuel has insufficient temperature after shock heating,
then too few fusion reactions occur and bootstrap heating
fails to materialize. If the fuel density �and thus charged
particle stopping power� is too low, then alpha particle reac-
tion products deposit their energy in a large volume of fuel
and fail to raise the temperature sufficiently to create a burn
wave. Making all of these processes occur at precisely the
same time requires very precise physical tolerances on the
driver power and the fuel pellet dimensions and sphericity. It
is estimated from ICF implosion simulations that laser pulse
shape tolerances of a few picoseconds and laser beam power
balancing tolerances of a few percent between the hundreds
of laser beams are necessary to achieve fusion ignition
conditions.

These highly precise physical tolerances demand that the
theoretical models and numerical schemes used to simulate
the pellet implosion and fusion burn have a very high fidelity
so that numerical modeling inaccuracies are significantly
smaller than the true physical tolerances. The numerical
simulation of inertial confinement fusion laser-pellet interac-
tion, pellet implosion, and fusion burn is accomplished with
complex multi-physics computer codes. The fundamental ba-
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sis of these codes is radiation-hydrodynamics. The physics of
ICF radiation-hydrodynamics is the same as that used in as-
trophysics to simulate dynamic phenomena in stars �7�. The
dense plasma is treated in the fluid approximation and the
heat transfer is modeled by x-ray radiation transport. In the
multi-physics nature of these codes, other physical phenom-
ena, such as laser energy absorption and charged fusion re-
action product transport and slowing down are coupled to the
mass, momentum and energy conservation equations of hy-
drodynamics.

The computer codes used to simulate ICF experiments
employ either finite difference or finite volume methods to
solve Eulerian, Lagrangian, or arbitrary Lagrangian Euler
�ALE� forms of the hydrodynamics equations. The Lagrang-
ian form has an advantage in preserving material interfaces
and is thus commonly used in ICF pellet implosion simula-
tions. While the computational mesh remains stationary in
the Eulerian form, vertices move with the local fluid velocity
in the Lagrangian form and the ALE form. Such moving
meshes add additional complexity to numerical modeling be-
cause the finite different cells can become distorted as they
follow the flow of the ever-present hydrodynamic instabili-
ties. A typical two-dimensional �2D� mesh used in fusion
target simulations is shown in Fig. 1, which employs a RZ
coordinate system to simulate a half sphere. Since it is a 2D
mesh, the finite difference cells are quadrilaterals with four
vertices and four edges rotated around the Z axis. The dis-
torted shape of an individual cell under hydrodynamic mo-
tion may have three different forms, as shown in Figs.
2�a�–2�c�. These are of the convex �regular� shape, the con-
cave �banana� shape, and the tangled �bowtie� shape. When
severe convex and concave shapes occur, the computational
mesh must be rezoned in order for the simulation to proceed
in a timely fashion without loss of numerical accuracy. This
is accomplished by redefining the mesh to be more orthogo-

nal and interpolating the original finite difference values onto
the new mesh. The tangled shape results in negative cell
volume and must be corrected by rezoning before continuing
the simulation.

The distortion of the hydrodynamic computational mesh
creates complications in the derivation of deterministic finite
difference algorithms for modeling the transport of particles
such as x-ray photons and DT fusion reaction alpha particles
on this mesh �8–11�. These algorithms have a figure of merit
that measures their ability to preserve regular solution fea-
tures such as plane waves crossing a distorted mesh that is
not orthogonal to the isocontours of the solution. The degree
to which the mesh does not distort the otherwise uniform
solution and the convergence of the solution with refined
mesh are features of these algorithms that researchers seek.
The complexity of numerical solutions of the transport equa-
tion on distorted meshes as well as the substantial computa-
tional resources necessary for solving the transport equation
in multiple dimensions often leads to the use of flux-limited
multi-group diffusion as the method of choice for transport
of x-rays and alpha particles in multi-physics ICF radiation-
hydrodynamics simulation codes. Flux-limited diffusion has
been shown to correctly predict general features of alpha
particle transport and energy deposition and accurately pre-
serve conservation of particle energy and number, but it fails
to predict detailed features of energy deposition such as the
“Bragg peak” that occurs at the end of the alpha particle
range �12�. Furthermore, flux-limited diffusion is a finite dif-
ference method that suffers the peril of the distorted hydro-
dynamic mesh.

In this paper we describe a Monte Carlo method for the
transport of DT fusion product alpha particles on a distorted
hydrodynamic mesh. The Monte Carlo method �13� has the
advantage that it is insensitive to the non-orthogonal nature
of the mesh because the algorithm simply tracks alpha par-
ticles to the next cell edge that they intercept and this algo-
rithm is independent of the cell shape. The Monte Carlo
algorithm has the disadvantage that it is a non-deterministic
method that relies on good statistical significance for accu-
rate solutions. The challenge is to use sufficient numbers of
“Monte Carlo particles” to obtain statistically significant re-
sults. This often requires substantial computational re-
sources. This limitation is balanced by the fact that Monte
Carlo algorithms are “embarrassingly parallel” and parallel
computers can easily be employed.

The paper is organized as follows. In Sec. II, we present
the Monte Carlo tracking algorithm. The initial sampling of
particles, intersection with cell edges, particle relocation on
the moving mesh and relocation after rezoning are discussed
in each subsection. In Sec. III, we describe the alpha particle
energy deposition, applying the same stopping power theory
for both diffusion and Monte Carlo transport. Results of our
Monte Carlo algorithm compared to flux-limited diffusion in
a production ICF simulation code are given in Sec. IV. We
use the baseline polar direct-drive target �14� proposed for
testing on the National Ignition Facility as an example to
examine the effect of using the Monte Carlo transport model.
This will likely be the first experiment that tests the fidelity
of the simulation methods used for DT fusion alpha particle
transport and slowing down. Energy deposition, burn wave

FIG. 1. Typical 2D computational mesh used in fusion target
simulations.

FIG. 2. Three different quadrilateral shapes under hydrodynamic
flow. �a� Convex �regular�, �b� Concave �banana�, and �c� Tangled
�bowtie�.
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propagation and ignition timing are compared side-by-side
with the diffusion model �12,15�. The different results pre-
dicted by the Monte Carlo method compared to the diffusion
method are discussed in Sec. V. Significant differences in
simulation results between these two transport methods ad-
vocate for the use of the more physically accurate and mesh
independent Monte Carlo method for such sensitive simula-
tions. Finally, a note on the run time speed-up of the Monte
Carlo algorithm for execution on a multi-processor parallel
computer concludes the paper.

II. TRACKING ALGORITHM

Simulation of alpha particle transport, slowing down and
tabulation of consequent energy deposition in the fusion
plasma by the Monte Carlo method is based upon the idea
that Monte Carlo particles can each approximate a large
number of actual alpha particles �with appropriate statistical
weight� and that tracking of the Monte Carlo particles is an
accurate representation of the transport of all real particles.
This approximation is improved as the number of Monte
Carlo particles increases and thus the statistical weight of
each becomes proportionately less. In the limit as the number
of Monte Carlo particles approaches the number of real par-
ticles, the simulation becomes exact. We will refer to the
Monte Carlo particles as particles in the following discus-
sion. In practical terms, the number of particles that one
chooses to track is determined by the amount of computa-
tional resources that are available and the degree of accuracy
that is necessary. The Monte Carlo algorithm is independent
of the number of particles; it is independently applied to each
particle to track its history.

Radiation-hydrodynamics simulations are inherently time
dependent and thus the alpha particle transport algorithm
should be time dependent. We have implemented two ap-
proximations to time dependence for tracking the alpha par-
ticles. In the adiabatic approximation, all particles created on
a given time step are tracked to the end of their life during
that time step. This adiabatic approximation is valid when
the hydrodynamic time step is comparable to the slowing
down time of the alpha particles. A second approximation
that we call the time dependent approximation is to track the
alpha particles until they either slow down to thermal energy
or they have transported for a time equal to the time step,
whichever is a shorter time. If they have not slowed to ther-
mal energy before the end of the time step, then information
about this Monte Carlo particle is saved and the transport is
restarted on the next time step. This second approximation is
usually necessary for ICF burn calculations. It requires that a
data structure to save particle information be constructed.
This is discussed in Sec. II C.

To track the particles on the hydrodynamic computational
mesh during a single time step, the Monte Carlo algorithm
must randomly generate particles in the particle source
cells, compute the distance to intersection with the next
cell edge as particles traverse cells, compute the energy loss
through slowing down in each cell traversed and tally the
accumulated energy loss in each cell. Between time steps
the algorithm must determine particle relocation in the cells

after the mesh moves. In the following, we discuss each task
individually.

A. Random sampling of particles in a cell

Random sampling of particles produced from fusion reac-
tions in a cell is not straightforward in the 2D RZ cylindrical
geometry. First of all, it is actually a three-dimensional �3D�
problem. The position of a sampled particle is represented by
Cartesian coordinates �x ,y ,z� within a torus enclosed by four
conical segments defined by the quadrilateral cell rotated
around the Z axis. Second, a geometric effect must be taken
into account; that is, a uniform density of created particles
implies that more total particles are created at larger radii
within a cell. Third, the sampled particles on a cell edge must
be associated with the indices of the cell into which they are
traveling. Adjustment to the cell indices of the particle loca-
tion is needed in order to ensure an intersection. This is
illustrated at the end of this section. This ambiguity can
cause problems with the tracking algorithm. Our algorithm
allows particles to be generated on the cell edges but some
algorithms do not �16�. This is necessary since the size of the
final compressed DT fuel in a typical target implosion is very
small �around 100 �m�.

We use the rejection sampling method for the random
particle sampling in a cell. As shown in Fig. 3, the quadri-
lateral of either regular shape or concave shape is enclosed in
a rectangle with the maximum Z and R length as the width
and height of the rectangle. The reject sampling method first
samples particles from the rectangle, for which it has an
analytic solution. The random selection of radius r in the
rectangle is given by

r2 = rmin
2 + ��rmax

2 − rmin
2 � , �1�

where rmin and rmax represent the minimum and maximum
radius of the quadrilateral, respectively. The variable � is a
random number between 0 and 1. The x and y coordinates of
the particle position can thus be sampled from a random
azimuthal angle as

x = r cos���

FIG. 3. Quadrilaterals are inscribed in rectangles. �a� Convex,
�b� Concave.
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y = r sin��� , �2�

where � is the azimuthal angle which is selected randomly
from 0 to 2�. The z coordinate of the particle position is
simply given by,

z = zmin + ��zmax − zmin� , �3�

where zmin and zmax represent the minimum and maximum z
components of the quadrilateral, respectively. The second
step in the rejection sampling method is to determine
whether this sampled particle from the rectangle region is in
the quadrilateral. If the particle is outside the quadrilateral,
the sampled particle is rejected. We design a method to de-
tect whether a particle is in a quadrilateral by splitting the
quadrilateral into two triangles. The particle-in-triangle �PIT�
test is performed for each of the two triangles. A point is
inside of a triangle if and only if the summation of the areas
of three sub-triangles created by connecting the point with
three vertices of the triangle is equal to the area of the tri-
angle. In order to include the quadrilateral concave shape as
well as the convex shape in the algorithm, the splitting line is
first determined to connect two opposite vertices of the quad-
rilateral. For quadrilaterals with regular shape, either pair of
two opposite vertices can be used as the splitting line. For
quadrilaterals with concave shape, the vertex with internal
angle greater than 180 degrees must be chosen for the split-
ting line. This vertex can be found by performing the PIT test
since this vertex is inside of the triangle constituted by the
other three vertices. The sampled particle location is tested
with the PIT test. If it is successful in either of the two
triangles, the particle is inside of the quadrilateral or on the
edge of the quadrilateral. Otherwise, the sampled particle is
rejected.

The accepted particle is also assigned the quadrilateral’s
computational mesh indices. In the rare occurrence of a par-
ticle located on a cell edge, the cell indices may need adjust-
ment because the isotropically sampled direction of travel
may associate the shared edge with the adjoining cell. The
cell to which the particle is assigned is always the cell into
which it is traveling. Care must be taken for edge particles
because failure to assign the correct cell indices can lead to
“lost particles” and errors in the particle census and deposi-
tion results. The algorithm used to handle the assignment of
the indices for the particle sampled on the edge is as follows.

�i� Determine the inward normal direction vector of the
edge. As shown in Sec. II C, the normal line of the conical
segment surface constructed by the edge is
��f /�x ,�f /�y ,�f /�z�, which is (2x ,2y ,−2k�r1+k�z−z1��)
and f is the equation function of the conical segment defined
in Eq. �5�. However, the normal line has no direction. To
assign the inward direction to the normal line, a reference
point inside of the quadrilateral is needed. We choose the
centroid of the quadrilateral as the reference point.

�ii� The cosine of the angle between the normal line vec-
tor and the vector from the particle position to the reference
point is calculated. If the cosine is less than zero, the direc-
tion of the normal line vector is reversed to use as the inward
normal direction vector.

�iii� The cosine of the angle between the inward normal
direction vector and the particle direction is calculated. If the
cosine is less than zero, the assigned indices need to be ad-
justed according to the location of the edge. For example, if
it is the edge �I ,J+1; I ,J�, the indices of the particle are
changed from �I ,J� to indices �I−1,J�.

B. Intersection with cell edges

To calculate the energy deposition in a cell, the particle
travel distance in the cell is required. To determine the point
at which a particle passes from one computational cell to
another, the intersection with the cell edge is calculated. In
the RZ cylindrical geometry, this requires the solution of two
coupled equations consisting of the equation of a line in 3D
and a conical segment equation. Again, each quadrilateral in
the mesh actually represents a volume enclosed by four coni-
cal segments defined by the edges. Unlike the situation in XY
planar geometry in which we can determine the intersection
using only the angular information without actual computa-
tion of the intersection, there is no shortcut for the 2D RZ
cylindrical geometry to the best of our knowledge. Compu-
tation of the intersections for each of the four sides must be
performed in order to determine the intersected edge. This is
actually the workhorse operation in the whole Monte Carlo
tracking algorithm, consuming the greatest amount of com-
puter time.

As shown in Fig. 4, the line in 3D is represented by the
starting point �x0 ,y0 ,z0� with direction cosine vector
�u ,v ,w�. One edge of a quadrilateral is connected by point
�r1 ,z1� and point �r2 ,z2�. This edge is rotated about the Z
axis and thus forms a conical segment. The intersection point
of the line and conical segment is �x ,y ,z� and the distance
from the starting point to the intersection is represented by
the symbol S. The equation of the particle trajectory line is

x − x0

u
=

y − y0

v
=

z − z0

w
= S , �4�

and the equation of the conical segment with ending point
�r1 ,z1� and point �r2 ,z2� is

x2 + y2 − �r1 + k�z − z1��2 = 0, �5�

where k��r2−r1� / �z2−z1�.

FIG. 4. Intersection with one edge of a quadrilateral by the
particle straight line trajectory.
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The solution of the two-coupled equations is based upon
the locations of the two points �r1 ,z1� and �r2 ,z2�.

�a� When the two points �r1 ,z1� and �r2 ,z2� are the
same, that is, r1=r2 and z1=z2, there is one potential solution
S= �z1−z0� /w only if the solution satisfies the equation �x0

+Su�2+ �y0+Sv�2=r1
2, otherwise, there is no solution.

�b� When r1=r2 and z1�z2, it is a cylinder with radius
r1, and there are two solutions if w� ±1. These two solu-
tions are

S =
− �x0u + y0v� ± ��x0u + y0v�2 − �1 − w2��r0 − r1�2

1 − w2 ,

�6�

where r0
2�x0

2+y0
2. Positive solutions are selected. If there are

two positive solutions, the smaller one is selected. There is
no solution when w= ±1, which means the particle trajectory
is parallel to the Z axis.

�c� When z1=z2 and r1�r2, the edge is a plane disk
parallel to the r direction. There is a solution only if w�0,
which is S= �z1−z2� /w.

�d� If none of the above cases apply, the distance to
the cell edge is obtained by solving the following quadratic
equation,

S2�1 − w2 − k2w2� + S†2x0u + 2y0v − 2kw„r1 + k�z0 − z1��…

+ r0
2 − „r1 + k�z0 − z1�…2 = 0, �7�

where k��r2−r1� / �z2−z1� and r0
2�x0

2+y0
2. The acceptable

solutions are positive ones.
The intersection with a quadrilateral edge results in eight

possible solutions, with two possible solutions for each edge.
The rules required to select the unique and correct solution
are �1� it must be positive, �2� it must be smallest, and �3� the
Z component of the intersection point must be in the range
�z1 ,z2�.

C. Particle travel history

Once a particle is launched in a cell, its trajectory is con-
structed by a straight line which encounters one of the cell’s
edges. This straight line approximation to the particle trajec-
tory is discussed in Sec. III. The particle trajectory is termi-
nated under one of the following three circumstances, �1� the
particle travels out of a user specified region of interest, �2�
the particle energy falls below a user specified cut-off energy,
or �3� the particle travel time is larger than the hydrodynamic
time step if the time dependent tracking is applied. The al-
ternative tracking approach is adiabatic, in which the particle
continues to propagate until one of the first two conditions
are met. The time dependent tracking method requires addi-
tional computer memory to store the previous incomplete
trajectories so that they can resume on the next hydrody-
namic time step. In our implementation, a two-dimensional
array is created for this purpose, one dimension is for the
particle number and the other is for the time step history
number. A particle element in the two dimensional array is
represented by a Fortran 90 data type which has position,
direction, energy, statistical weight, and other statistical vari-

ables as its data members. The history number equals one for
adiabatic tracking. For time dependent tracking, a rule must
be applied to free a history slot so that it can be reused if the
needed history index is larger than the total available number
of histories in the data structure. The history slot marked as
reusable either �1� contains the fewest particles or �2� is the
oldest, depending upon user input. The particles in the cho-
sen history slot are forced to propagate continually until ei-
ther �1� they are out of the region or �2� their energy is below
the cut-off energy. The escape boundary or the boundary of
the user specified region can be set as the outermost surface
or a predefined radius. For example, in the simulation of a
laser driven target implosion, we can set the region of inter-
est radius as the interface between the DT fuel and the abla-
tion layer under the assumption that the alpha particles
propagating beyond this radius have little contribution to the
fusion burn. Particles with energy less than the cut-off en-
ergy �e.g., 0.01 MeV� are considered as thermalized and
their energies are deposited locally.

D. Moving mesh, rezoning, and restart

A Monte Carlo charged particle deposition package using
the above algorithm has been implemented in the ICF simu-
lation code, DRACO, developed by the Laboratory for Laser
Energetics �LLE� Ref. �17�. DRACO is a Lagrangian
radiation-hydrodynamics code designed to run in a multi-
dimensional geometry. It includes important ICF physics
such as energy exchange among the fields, refractive laser
ray tracing, classical ion and electron conductivity, multi-
group radiation diffusion, and multi-group charged particle
diffusion deposition �18–20�. Rezoning is included in the
code to keep the computational mesh from severe distortion,
and material interfaces are tracked in the mixed material
cells. For the adiabatic tracking method, the particles are
tracked to their end-of-life on each time step so there is no
complication with the moving mesh. However, for the time
dependent tracking method, the hydrodynamic time step
serves as a clock for the particle tracking. The particles stop
traveling temporarily when their propagation time is equal to
the current hydrodynamic time step. At the beginning of the
next time step or after mesh rezoning, the cell indices of the
particles’ locations need to be readjusted because the mesh
moves, but the particles remain fixed in space. The correct
cell indices of particle location are required to find the inter-
section with the next cell edge and also for the correct use of
the material properties in computing the particle slowing
down. Finding the new indices is greatly simplified by the
fact that numerical stability required by the Courant-
Friedrichs-Lewy �CFL� condition restricts a cell to move for
a distance less than one cell length. This is also true for mesh
rezoning which relocates the cell vertices to reconstruct a
more regular mesh. In this case, the relocation is limited to
one cell to minimize the re-flux numerical diffusion of hy-
drodynamic field variables associated with the rezoning �21�.
This restriction greatly simplifies the cell index search algo-
rithm and reduces the computing time, since only the four
neighbor cells need to be searched.

Very often, hydrodynamics codes need to restart from pre-
vious runs. To implement this capability, data information is
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periodically written from memory to hard disk at checkpoint
time steps. However, it is impractical to write out all detailed
Monte Carlo particle data structures during checkpointing
since it significantly increases the execution time and uses
too much disk space. This can be seen from an example.
Assuming one million particles are followed on each time
step and assuming 50-bytes of storage for each particle, the
total storage size to be written is about 50 Mbytes per his-
tory. When particles from all histories are included, the total
storage may grow to more than several gigabytes in the par-
ticle history data structure. One way to overcome this diffi-
culty is to force all live particles to deposit their remaining
energy according to the adiabatic method by propagating un-
til either they are out of the region or their energies drop
below the cut-off energy on the time step before the opera-
tion to write data at the checkpoint is taken. In this way the
particle history data structure need not be written. However,
detailed time dependent information is lost. Another ap-
proach is to statistically build an energy distribution function
and a direction distribution function from the data structure
of live particles, and write these distribution functions for
each cell to disk storage instead. When the simulation re-
sumes from the previous run, the Monte Carlo particles are
dynamically sampled from these distribution functions. This
approach uses less disk space than writing the entire data
structure and preserves some limited information about the
energy and direction distribution.

III. ENERGY DEPOSITION BY STOPPING POWER

There are two major approaches to the theoretical calcu-
lation of charged particle stopping power. One is based on
Bohr’s theory which is dependent on the impact parameter
between the trajectory particle and the target atom in the
classical mechanic limit combined with the Bethe-Bloch
equation which is dependent on momentum transfer from the
particle to the target in the quantum mechanic limit. The
other approach is based on the Fokker-Planck equation to
evaluate the collision term of the Boltzmann equation �22�.
In our work, we use the formulas derived by Li and Petrasso
�23�, which properly treat the effects of large-angle scattering
as well as small-angle collisions by retaining the third-order
term in the Taylor expansion of the collision operator in the
Fokker-Planck equation.

The relationship between the stopping power and the en-
ergy loss rate is

�dE

ds
�

e/i
=

Et

vt
v�

e/i �8�

where Et is the trajectory particle energy, vt is the particle
velocity, and v�

e/i is the energy loss rate to background elec-
trons and ions, which is given by

	�
e/i =

2et
2 ln 
b

2

mtvt
3 �pf

2 G��� , �9�

where et �ef� is the trajectory �field� particle charge, mt�mf� is
the trajectory �field� particle mass�, �pf is the plasma fre-
quency and

G��� = � − mf��/mt + mf�� + ���/�mt ln 
b� . �10�

�= �2/����0
xt/fe−���d� is the incomplete Gamma integral,

xt/f =vt
2 /v f

2 where v f
2=2kTf /mf. For the Coulomb logarithm

ln 
b for electrons we use the formula by Skupsky �24�,

ln 
RPA = 0.5�ln�1 + 
s
2�0.37 + 0.44�2� − 1�� , �11�

which is obtained from the random-phase-approximation
form of the quantum-mechanical dielectric function. 
s is
the standard Coulomb logarithm argument �=12mT /
2kD

2 �.
The effect of electron degeneracy � is calculated through the
relation of the Fermi integral and the electron number den-
sity,

n = 4�/h3�2mT�3/2F1/2��� . �12�

Note in the case of alpha particle and field electron interac-
tions, G��� approaches 2

3x3/2 because of the small mass ratio
�	10−4� and x�1. Thus, v�

e is independent of the trajectory
particle energy Et.

Assuming the stopping power is constant for a small trav-
eling distance �S, the final energy becomes

E = Ei −
dE

ds
�S

The traveling time is solved from �=�Ei

E �dE /dt�−1dE, which
can be approximated by Ref. �12�

� =
2

3

1

v�
e ln

v�
eE3/2 + Ai

v�
eEi

3/2 + Ai

, �13�

where Ai=et
2 ln 
i�pi

2 Gi����mt /2.
The relative contribution to the alpha particle slowing

from the electrons and ions of the background plasma dem-
onstrates that the stopping from the electrons dominates at
high alpha particle energies �Fig. 6.12 of Ref. �2��. This vali-
dates the straight line slowing down approximation since the
slowing ions suffer no significant deflection by colliding with
electrons. Large angle scattering or dispersion occurs only
near the end of the particle trajectory to thermalization when
the velocity of alpha particles decreases and the stopping
from the ions dominates.

IV. RESULTS FOR NIF POLAR DIRECT DRIVE TARGET
IGNITION

The example we use to investigate the effect of the Monte
Carlo alpha particle transport algorithm is the so called base-
line polar direct-drive NIF design �14�. This design employs
a cryogenic DT-shell target with a thin polymer ablator sur-
rounding the DT ice shell. The isentrope of the ablation sur-
face and the fuel is controlled by a preheat shock. Figures
5�a� and 5�b� shows the target specification and the laser
pulse shape. In order to test the scheme with a distorted
mesh, a non-uniform laser irradiation is applied at l mode
equal to 6 with the amplitude of 1% variation. The simula-
tion includes laser ray tracing, hydrodynamics, thermal con-
duction, and burn wave propagation. Calculations are con-
ducted using both the diffusion method �12,15� and the
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Monte Carlo tracking method. Side-by-side comparisons are
made for the results from these two methods.

First, we look at the difference of alpha particle energy
deposition from the two different options in the Monte Carlo
transport method; that is, the time dependent transport and
the adiabatic transport approximation. In the time dependent
method, the hydrodynamic time step acts as a clock for par-
ticles, while in the adiabatic method, the particles deposit all
their energy in the current time step. From Fig. 6, it can be
seen that the temporal and spatial integrated energy deposi-
tion for both methods are very similar. The latter method
gives a slightly larger energy deposition than the former. The
variation of energy deposition at each time interval results
from different time steps used for the numerical stability.

Comparison between the Monte Carlo and diffusion trans-
port for the same quantities as above is also plotted in Fig. 7.
The spatially integrated current time energy deposition �the
lower two lines in Fig. 7� is normalized to the same time step
interval. The figure shows that the energy depositions before
9.55 nanoseconds �ns� are close. For example, at 9.38 ns the

total temporal and spatial integrated energy for the Monte
Carlo method is 1.2�109 ergs while it is 0.93�109 ergs for
the diffusion method, and thus the energy deposition from
the diffusion method is 20% lower than that from the Monte
Carlo method. After 9.55 ns, the energy deposition using the
Monte Carlo method is significantly larger than that using
the diffusion method. It lasts for 50 ps to 9.6 ns before the
energy deposition decreases. The peak deposition using the
diffusion method lasts longer comparing with the Monte
Carlo method, which is about 80 ps. Therefore, the Monte
Carlo method gives higher heating rate than the diffusion
method. The other salient feature is the Monte Carlo method
predicts earlier ignition than the diffusion method since the
maximum energy deposition using the Monte Carlo method
occurs earlier than using the diffusion method. This can be
seen in detail in the later discussion. The ion temperature
contours shown in Figs. 8�a� and 8�b� at 9.55 ns explain the
higher heating rate for the Monte Carlo method. As a result
of 20% more energy deposition, the Monte Carlo method
drives higher ion temperature in the hot spot, which is
20 keV in comparison with 13 keV from the diffusion
method. Note the size of the hot spot is quite similar.

Much closer investigation of the difference of energy
deposition between the Monte Carlo method and the diffu-
sion method is given in Fig. 9. The energy deposition is
azimuthally averaged over constant mesh index in the azi-
muthal dimension. This averaging follows the contours cre-
ated by the distorted mesh. We can see that at 9.50 ns they
are very close. However, at 9.60 ns using the Monte Carlo
method the ignition has already taken place and the alpha
particles start to heat up the surrounding main fuel, while
using the diffusion method the alpha particles still deposit
energy at the center of the hot spot. At 9.67 ns, the thermal

FIG. 5. The baseline “all-DT” 1.5 MJ target design. �a� The
target specification and �b� the laser pulse shape.

FIG. 6. A comparison between the time dependent and the adia-
batic Monte Carlo transport. Dash-dotted lines: adiabatic. Solid
lines: time dependent. Upper two lines: total energy deposition up
to the current time step. Lower two lines: energy deposition at the
current time step.

FIG. 7. A comparison between the time dependent Monte Carlo
method and the flux-limited diffusion method. Dash-dotted lines:
diffusion. Solid lines: Monte Carlo. Upper two lines: total energy
deposition up to the current time step. Lower two lines: energy
deposition at the current time step. The peak energy deposition
time: Monte Carlo �9.56–9.59 ns�, diffusion �9.6–9.65 ns�.
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burn wave propagates outward further using the Monte Carlo
method while the ignition only just starts when using the
diffusion method. The resulting ion temperatures are shown
in Fig. 10. As we can see, the ion temperature is increasing
from 10 keV for both methods at 9.5 ns. The center of the
hot spot is over 100 keV at 9.6 ns using the Monte Carlo
method and the burn wave is developed at the radius of
200 �m and starts to propagate outward, while the compres-
sion is still on the way inward using the diffusion method.
Using the Monte Carlo method, the center of the hot spot is
cooling down at 9.67 ns as the result of the burn expansion
and a larger thermal burn wave is developed from heating
along the incoming main fuel. The main fuel is also ignited
and a thermal wave is developed using the diffusion method.
This offset in timing for ignition and burn waves is further
shown in Fig. 11. The time at the end of compression and the
beginning of heating the main fuel using the Monte Carlo
method is 9.56 ns while it is 9.60 ns using the diffusion
method. The thermal wave becomes obvious at 9.60 ns and
amplifies at 9.67 ns for the Monte Carlo method while it is at
9.63 ns and 9.72 ns for the diffusion method, respectively.
This clearly illustrates that the Monte Carlo method predicts
the starting time of ignition about 30 ps earlier than the dif-
fusion method predicts.

Finally, the gain factor is given in Fig. 12 for four differ-
ent runs. Three Monte Carlo calculations are performed for

the particle numbers of 104, 105, and 106 to investigate the
convergence and study the statistical effect of the number of
particles used. Note these are particles newly emitted from
nuclear burn for each time step. The actual number of
tracked particles is much larger since there are many census
particles from previous time steps also included in the trans-
port. It can be seen that the three calculations generate simi-
lar gains in the end, but the ignition time is different. From
the three Monte Carlo runs, we observe a logarithmic con-
vergence trend with differences in time of ignition varying
constantly with each factor of ten in particle number. For
example, the calculation with 104 particles predicts a delay
ignition time for about 7 ps comparing with the calculation
with 106 particles, and the calculation with 105 particles sits

FIG. 9. A comparison of the averaged energy deposition be-
tween the Monte Carlo and diffusion method at different times,
averaged over constant azimuthal mesh index �i-line�.

FIG. 10. A comparison of burn waves between the Monte Carlo
and diffusion method at different times. Earlier ignition for Monte
Carlo can be seen.

FIG. 8. The ion temperature contour at the compression stagna-
tion phase �t=9.55 ns�. �a� Monte Carlo and �b� diffusion. The tem-
perature at the center of hot spot: Monte Carlo �20 keV� and diffu-
sion �13 keV�.
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halfway between them. While this is not a rigorous conver-
gence proof, the trend shows that the gap in ignition time
between the Monte Carlo results and the diffusion result is
increasing with increased number of Monte Carlo particles.
In the time between 9.56 ns and 9.58 ns the gain factor dif-
fers by a factor of 2 by using different number of Monte
Carlo particles. This shows the burn dynamics is very sensi-
tive to the energy deposition. We postulate the statistical ef-
fect inherent in the Monte Carlo simulation is reflected in the
energy deposition and therefore the plasma ion temperature.

A slightly different ion temperature at the ignition time may
result in a larger difference in the reaction rates, which is fed
into the next time cycle. The fourth calculation is performed
using the diffusion method. The gain factor is 37, which is
21% lower than using the Monte Carlo method where it is
47.

V. SUMMARY AND DISCUSSION

A scheme for the Monte Carlo tracking of fusion burn
product alpha particles on a Lagrangian mesh has been pre-
sented. Since the material properties such as temperature and
density vary from cell to cell, detailed cell-by-cell tracking is
required for energy deposition. The initial positions and di-
rections are randomly and uniformly selected. The particle
weights are assigned according to the number of generated
alpha particles. Particle trajectories are obtained by solving
for the intersection with the cell edges represented by a qua-
dratic equation. The trajectories are assumed as straight lines
since the charged alpha particles are highly energetic. Vari-
ous aspects appearing in the coupling of Monte Carlo track-
ing with Lagrangian hydrodynamics, such as mesh moving
and rezoning are discussed. The algorithm for determination
of the particle location after the mesh moves or after rezon-
ing is simplified by virtue of the CFL hydrodynamic stability
requirement so that only neighbors are searched to locate the
particle.

A test case is presented to study the effect on the target
ignition by adopting the Monte Carlo method for alpha par-
ticle transport. In this test case, a non-uniform laser irradia-
tion to the DT capsule is applied at l mode equal to 6 with
amplitude of 1% variation. Comparing with the results from
the alpha particle flux-limited diffusion transport method, we
find the Monte Carlo energy deposition method predicts ig-
nition time 30 ps earlier than the diffusion deposition
method, and generates higher hot spot temperature. We ob-
serve the same effect when the uniform laser irradiation is
used.

In a comparison between diffusion and Monte Carlo
transport approximations the question of which is the intrin-
sically more appropriate model is always an issue. In the
case of high energy alpha particle slowing down in DT plas-
mas with the temperature, density and spatial scale addressed
here, the diffusion approximation is found to be an intrinsi-
cally less accurate approximation than Monte Carlo transport
for the following reasons. The Monte Carlo approximation
discussed in this paper directly simulates the angular and
energy dependence of the alpha particles. The angular depen-
dence is treated directly by choosing random directions of
travel at birth from fusion. The energy dependence is treated
using a continuous slowing down model that numerically
mimics the continuous slowing down theory that underpins
it. The transport itself is independent of the mesh distortion.
The transport is approximated as straight lines, which accu-
rately reflects the travel of the alpha particles so long as
small angle scattering is the predominant energy loss mecha-
nism. This is true until their velocity becomes comparable to
the electron thermal velocity, at which point the alphas have
lost a large percentage of their energy. Scattering of alphas

FIG. 11. The timing offset for ignition and burn wave by match-
ing the time at which the target is ignited, the thermal burn wave is
appearing and the strong burn wave propagates. Highest ion tem-
perature at the center of hot spot achieved in the Monte Carlo
method is 110 keV, while it is 80 keV in the diffusion method.

FIG. 12. A comparison of gain factor between the Monte Carlo
and diffusion method. Ignition time: Monte Carlo with 106 particles
�9.551 ns�; Monte Carlo with 104 particles �9.558 ns�; diffusion
�9.58 ns�.
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on ions contributes to large angle collisions, but these occur
at the end of the alpha particle range and contribute little to
the energy deposition. The most significant approximation in
the Monte Carlo approach is of a statistical nature, and nu-
merical tests show that enough Monte Carlo particles have
been used in the reported simulations to support the conclu-
sions of the paper.

In the diffusion approximation to the transport equation,
the angular dependence of the alpha particle distribution
function is first order in angle. The particles must be nearly
isotropic. The isotropy of the particle distribution function in
neutral particle transport is maintained by significant large
angle scattering. This is lacking in alpha particle transport,
where the particles travel in straight lines. Isotropy is
often inferred by comparing the particle mean-free-path to
relevant scale lengths of the transport medium. In the case of
alpha particles, the range is approximately 0.35 g/cm2

measured in density independent units. This is by definition
the extent of the hot spot necessary for ignition. The total
fuel radius is approximately 1 g/cm2. Thus the system
of relevance is only three times the range of the alpha
particles and yet we are attempting to simulate the details
of the alpha slowing down within this range. Finally, the
diffusion approximation is augmented with so-called
flux-limiting to address the breakdown of the approximation
under the conditions found in burning DT plasma. The
flux-limiting avoids causality violation where particles
otherwise would propagate a signal at speeds faster than
their maximum velocity, but it gives no credible information
about the details of the transport. For these reasons we
believe the only credible conclusion is that the Monte
Carlo transport algorithm is giving more accurate transport

and energy deposition results than the diffusion algorithm.
Simple numerical tests of the algorithms confirm that the
variations in energy deposition of the alpha particles over
spatial scales of less than the alpha particle range are signifi-
cantly different.

The reason that flux-limited diffusion is used in simula-
tion codes rather than Monte Carlo transport is the substan-
tial increase in computer time that is needed to execute the
Monte Carlo algorithm in comparison to diffusion �25�. The
point of this paper is to measure the differences in integrated
target performance results �i.e., ignition� that are predicted
using these two approximations that vary significantly in
their accuracy of alpha particle transport. We see that the
time of ignition �an important parameter in target design�
differs significantly for the two transport models. The earlier
ignition time may be explained by the fact that the alpha
particles tend to lose their energy at the end of their range
�the so called “Bragg peak”� and thus heat the incoming
main fuel sooner than the diffusion transport which incor-
rectly predicts a peak deposition in the middle of the range.
For marginal ignition, �R	1, energy deposition is sensitive
to the transport model. For the case we studied in Sec. IV, the
Monte Carlo method predicts 20% higher energy deposition
to the hot spot plasma than the diffusion method, and thus
generates higher hot spot ion temperature. Another reason
that the Monte Carlo method gives higher hot spot tempera-
ture we can conjecture is that the particles having an inward
direction travel a length of the diameter of the sphere. The
longer the traveling length is, the more likely the particle
deposits more of its energy. This is naturally simulated in the
Monte Carlo method. To support this reasoning, we rerun the
calculation with the particles having only outward directions.
We expect that the ion temperature at the center of the hot
spot would be less than the full 4� transport, since the par-
ticles will not enter the sphere defined by their initial radius.
Figure 13 demonstrates this effect. At time 9.55 ns, the full
4� transport gives the temperature of the center of the hot

FIG. 13. A comparison of ignition ion temperatures at 9.55 ns
using two different direction selection methods in the Monte Carlo
transport. Dash-dotted line: particles are allowed to have only out-
ward directions. Solid line: directions of particles are isotropic. The
comparison is used to illustrate the importance of the inward trav-
eling deposition which we suspect contributes to the higher ion
temperature at the center of hot spot.

FIG. 14. The speed-up factor for the Monte Carlo transport run-
ning in parallel on a Linux cluster.
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spot of about 28 keV while the only outward transport gives
the temperature of 20 keV.

We conclude by discussing the simulation run time using
the Monte Carlo transport method. An advantage of Monte
Carlo particle transport is that the algorithm is “embarrass-
ingly parallel.” With negligible communication cost, the cal-
culation can achieve linear speed-up. Figure 14 shows the
linear speed-up factor by using up to 50 processors on a
Linux cluster. The slight deviation from ideal linear speed-up

is understandable since there are low bandwidth and low-
speed switches in the cluster.
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